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Abstract. We introduce a new numerical approach to step flow growth, making use of its analogies
to dendritic growth. Concentrating on the situation close to the instability threshold of step growth,
nonlinear evolutionary equations for the steps on a vicinal surface can be derived in a multiple-
scale analysis. This approach retains the relevant nonlinearities sufficiently close to the threshold.
Our simulations recover and visualize these findings. However, on the basis of our simulations
we further report results on the behaviour far from the threshold. Step propagation is treated as
a moving-boundary problem based on the Burton–Cabrera–Frank (Burton W K, Cabrera N and
Frank F C 1951Phil. Trans. R. Soc.A 243299) model. Our method handles the problem in a fully
dynamical manner without any quasistatic approximations. Furthermore, it allows for overhangs.

1. Introduction

The ability to control atomistically the growth of metal and semiconductor crystal surfaces is
one of the central topics of research both from a technological [1, 2] and from a fundamental
theoretical [3] point of view. One of the focuses at the forefront of research is on the creation
of new epitaxial architectures by careful manipulation of deposition processes [4]. Among
the existing growth techniques, molecular beam epitaxy (MBE) has been established as a
particularly important method for efficiently growing substrates in a well defined layer-by-
layer mode. For example, atomically abrupt and smooth interfaces can be obtained on vicinal
surfaces by keeping the MBE conditions appropriate forstep flowgrowth. Step flow has long
been recognized as an alternative to two-dimensional nucleation [5]. A necessary condition
for ‘good’ materials is that the flowing step train is stable. One of the undesirable effects
which eventually interferes with stable growth is faceting [6]. Destabilization mechanisms
which may disturb step flow growth can be of either extrinsic or intrinsic origin. An example
of the former case is provided by impurities acting as pinning centres [7]. The latter case has
recently been addressed by Bales and Zangwill [8] in a linear stability analysis, showing a
morphological instability driven by diffusion of atoms along the terrace. The results are the
critical condition of the onset of instability and a band of active modes growing exponentially
in time. Benaet al [9] showed that, close to the threshold, nonlinear terms can be found to
saturate the linear amplification, leading to Kuramoto–Sivashinsky-like [10,11] behaviour of
the system. Higher-order nonlinear terms can change this behaviour into another regime of
morphological instability, which will be illustrated by pictures derived from simulations in
the following. Our simulations also reveal that crystal anisotropy can strongly influence the
morphology selection.
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2. The numerical method

A version of the step flow model together with an explanation of the choice of its equations
has already been given in [8]. At this point we merely rewrite the equations in a dimensionless
form:

∂tu = E∇u2 − u (1)

vn = (∂nu)+ − (∂nu)− (2)

±(∂nu)± = ν±(u|I − ueq) (3)

ueq = −1 + d0κ (4)

(∂n denotes the spatial derivative in the direction normal to the interface,vn is the normal
velocity at the step,∂t the partial derivative with respect to time). The equation fieldu is
related to the original adatom concentrationc of the Burton–Cabrera–Frank (BCF) approach
by

u = �(c − τF ) (5)

where� is the atomic area of the solid andF the frequency of the rate of impingement of
adatoms from the gas atmosphere. Such adatoms diffuse and evaporate with lifetimeτ , so their
global dynamics away from the step edge is governed by the diffusion–relaxation equation (1).
In case the where it reaches the step edge before evaporation, equations (2) to (4) provide
the boundary conditions, which govern its incorporation in the step edge. This incorporation
process leads to the step advancing with velocityvn, thereby setting the new boundary for
equation (1). The parameters used are given by

1 = −�(ceq − τF ) (6)

with ceq equal to the equilibrium concentration at the step andd0 = �ceq0 (0 ∼ line tension).
Finally,ν± are attachment coefficients for the incorporation of adatoms at the upper and lower
step edges, respectively. Figure 1 gives a sketch of the physics underlying this mathematical
formulation.
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Figure 1. Left: the basic physics of step flow growth. Adatoms are impinging on a terrace with
frequencyF and desorbing after a lifetimeτ . On reaching the step edges, their incorporation is
governed by different attachment coefficientsνpm for attachment from above or below, respectively.
Right: contours of a single step advancing in they-direction. Note that the frame of reference of
the simulation moves with the structures’ tip velocity. The dotted line gives the initial conditions
at t = 0 and is only superposed.
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Equations (1) to (4) formulate a moving-boundary problem, sincevn is the velocity of the
interface acting on the diffusion field through changing its boundary every time step. Such
problems have been dealt with in various contexts—amongst others, for the problem of free
diffusive growth from an undercooled melt [12]. We adopt the numerical method used in
reference [12] with its special features of eliminating additional numerical anisotropy by using
sandwiched grids and solving the full dynamical problem. The latter is necessary if Hopf
bifurcations, which could in principle arise in such a system [20], are detected.

3. Morphologies beyond the threshold

The threshold of instability for step flow growth can be found in a linear stability analysis [8].
Concentrating on the situation close to the threshold, nonlinear terms which are relevant for the
evolution of the system can be derived in a multiple-scale analysis. Up to third order, such an
analysis was carried out in [9] leading to the following canonical-form equation (Kuramoto–
Sivashinsky (KS)):

ht = −hxx − hxxxx +
1

2
h2
x (7)

(here partial derivatives are denoted by subscripts). The first term leads to an amplification of
the long-wavelength modes, while the second stabilizes short-wavelength modes. The non-
linear term obviously serves to saturate the unstable modes, resulting for example in cellular
structures or viscoelastic behaviour [15].

A little further away from the threshold, the systems’ behaviour can already be char-
acterized by the evolution of deep holes in an initially weakly modulated interface (figure 1,
right). This behaviour can be related to a termh2

xx found in a multiple-scale analysis up to
fourth order. This analysis can be carried out as in [13], and in the same manner it is possible
to record a kinetic phase diagram for the ‘d0–1’ plane (figure 2).
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Figure 2. The phase diagram in the ‘d0–1’ plane. The precise contour of the KS regime can
only be estimated from the analytical limitsε � 1 andε/(1− 1) � 1 together with simulation
experience.

An illustration of our simulations of the viscoelastic KS-type behaviour is found in figure 3.
We show a train of three steps advancing in they-direction. The lines give the contours of
the step edges seen from above. The grey-levels represent the adatom density, which is lowest
actually at the step edges. We donotshow the monatomic height difference between the steps
(compare figure 1 (left)).
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Figure 3. Top: a train of three steps simulated with our numerical approach slightly below the
threshold, yielding KS-type behaviour. Bottom: a STM of a vicinal Si(001) surface with a miscut
in the〈100〉 direction after 500 seconds of deposition at a rate of 0.02 monolayers per second [16].

(This figure can be viewed in colour in the electronic version of the article; seewww.iop.org)

In the following, we would like to comment on the meaning of this KS regime for
experimental step flow growth at vicinal surfaces. The viscoelastic behaviour of the KS
equation is known to be a manifestation of the coupling of an Eckhaus instability with long-
wavelength Galilean distortions [19]. However, an Eckhaus instability can only be excited if
the wavenumber of the initial perturbation of the interface falls into the interval

qI ∈ {qe; qc} (8)

whereqe is the wavenumber of the onset of the Eckhaus instability andqc is the wavenumber
corresponding toλc, the shortest wavelength to yield linearly unstable growth. A linear stability
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analysis taking into account the propagation of the step yields

q2
c = 4

(
2

1
− 1

)2

(3−1)−1ε (9)

q2
e =

1

3
q2
c (10)

whereε measures the distance from the threshold. On the other hand, an experimental vicinal
surface is finite; thus the only possible wavenumbers of an initial perturbation which are
solutions to the KS equation are a discrete rather than a continuous set:

qn = 2π

L
n n = 1, 2, . . . (11)

whereL is the width of the vicinal surface perpendicular to the direction of step propagation.
Since the KS regime is limited to a very restricted set ofε-values (figure 2), even in extended
experimental systems it might not be possible to prepare an initial state with a wavenumber
obeying equations (8) to (11) for certaind0/1 ratios.

There is just as good physical evidence that long-range Galilean distortions are unlikely to
occur in an experimental system. The reason is that the approach described above completely
neglects the influence of crystal anisotropy. From dendritic growth analysis, however,
anisotropy is known to have a great impact on the selection of growth morphologies. This point
was already mentioned in [18], where the authors found that crystal anisotropy stabilizes the
step advancing in the direction of minimal step stiffness. Now, due to dimerization effects, the
direction of minimal step stiffness does not need to be aligned with the direction of global step
propagation (figure 3, bottom). We can take account of that in our mathematical formulation
by changing equation (4) to

ueq = −1 + d0κ[1− εm cos(m(θ − θ0))] (12)

whereθ0 is the angle between the directions of minimal step stiffness and global propagation
(εm denotes the crystal anisotropy). Simulation of equations (1), (2), (3) and (12) withε4 = 0.1
andθ0 = 25◦ gives rise to travelling waves, as shown in figure 4. In this physical context, no
Galilean distortions are to be expected. However, in long-time evolution it is possible to detect
wavelength modulations (figure 4, bottom) as a result of a purely diffusive instability due to
the translational Goldstone mode which is a neutral mode. We are currently in the process of
building up an analytical description of this phenomenon via a coupled set of amplitude and
phase equations, and will comment on its bifurcation scenario elsewhere [21].

4. Summary

Analysis carried out to extend the Bales–Zangwill stability analysis to the weakly nonlinear
regime [9] is valuable for showing that linearly unstable step flow growth can be saturated,
giving rise to further physical scenarios. However, its relevance to experimental systems
remains unclear, and the experimental proof of a step meandering in chaotic fluctuations rather
than statistical ones remains to be given. In the meantime, it is worthwhile to study the influence
of further experimental variables via our numerical approach, to increase our understanding of
the mechanisms of step flow growth as revealed in experiments. We believe crystal anisotropy
to constitute quite an important factor in this context. First simulations have revealed that,
in particular, especially unsaturated instabilities, such as those shown in figure 1 (right), can
be changed drastically by crystal anisotropy as well as by the anisotropy of the attachment
kinetics. We will report our results which model the formation of vicinal facets, as found
experimentally in [17], in a further article [22].
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Figure 4. Top: a simulation using the same parameters as in figure 3 (top); however, equation (12)
with ε4 = 0.1 andθ0 = 25◦ is used instead of equation (4). Bottom: the same simulation as at the
top, but roughly 1.4× 104 time steps later.

(This figure can be viewed in colour in the electronic version of the article; seewww.iop.org)
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